Exercise 8

In Exercises 5-8, derive the general solution of the given equation by using an appropriate change of variables, as we did in Example 3.

$$
a \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x}=u, \quad a, b \neq 0 .
$$

Solution

Make the change of variables, $\alpha=a x+b t$ and $\beta=a x-b t$, and use the chain rule to write the derivatives in terms of these new variables.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x}=\frac{\partial u}{\partial \alpha}(a)+\frac{\partial u}{\partial \beta}(a)=a \frac{\partial u}{\partial \alpha}+a \frac{\partial u}{\partial \beta} \\
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}=\frac{\partial u}{\partial \alpha}(b)+\frac{\partial u}{\partial \beta}(-b)=b \frac{\partial u}{\partial \alpha}-b \frac{\partial u}{\partial \beta}
\end{aligned}
$$

The PDE then becomes

$$
\begin{aligned}
u & =a \frac{\partial u}{\partial t}+b \frac{\partial u}{\partial x} \\
& =a\left(b \frac{\partial u}{\partial \alpha}-b \frac{\partial u}{\partial \beta}\right)+b\left(a \frac{\partial u}{\partial \alpha}+a \frac{\partial u}{\partial \beta}\right) \\
& =2 a b \frac{\partial u}{\partial \alpha} .
\end{aligned}
$$

Subtract both sides by u.

$$
2 a b \frac{\partial u}{\partial \alpha}-u=0
$$

Divide both sides by $2 a b$.

$$
\begin{equation*}
\frac{\partial u}{\partial \alpha}-\frac{1}{2 a b} u=0 \tag{1}
\end{equation*}
$$

This is a first-order linear differential equation, so it can be solved by using an integrating factor.

$$
I=\exp \left(\int^{\alpha} \frac{-1}{2 a b} d s\right)=e^{-\alpha /(2 a b)}
$$

Multiply both sides of equation (1) by I.

$$
e^{-\alpha /(2 a b)} \frac{\partial u}{\partial \alpha}-\frac{1}{2 a b} e^{-\alpha /(2 a b)} u=0
$$

Use the product rule.

$$
\frac{\partial}{\partial \alpha}\left[e^{-\alpha /(2 a b)} u\right]=0
$$

Integrate both sides partially with respect to α.

$$
e^{-\alpha /(2 a b)} u=f(\beta)
$$

Here f is an arbitrary function. Multiply both sides by $e^{\alpha /(2 a b)}$.

$$
u(\alpha, \beta)=e^{\alpha /(2 a b)} f(\beta)
$$

Now that the general solution to the PDE is known, change back to the original variables.

$$
u(x, t)=e^{(a x+b t) /(2 a b)} f(a x-b t)
$$

